4828

This result is unexpected from the reported pK_2 values for the two acids, 1.7¹⁶ for selenic acid and 1.98¹⁷ for sulfuric acid.

Figure 2 is a plot of H_0 vs. water activity (determined from aqueous vapor pressure) for sulfuric,¹⁵ perchloric, ¹¹ and selenic acids. ¹⁸ All of these H_0 values have been obtained using primary aniline indicators. As can be seen the values for selenic acid fall on the curve described by the other two acids. Thus, all three acids at a particular water activity have the same proton donating ability. The values of Braun¹² for mixed

(16) A. K. Covington and J. V. Dobson, J. Inorg. Nucl. Chem., 27, 1435 (1965). (17) H. S. Dunsmore and G. H. Nancollas, J. Phys. Chem., 68, 1579

(1964). (18) Water activities taken from T. G. O. Berg, Acta Chem. Scand., 7,

1045 (1953).

acetic acid-sulfuric acid have not been included in Figure 2 yet they do fall on the curve described by the other acids. These data serve to validate the water activity- H_0 correlation at high acidities.

Perrin⁹ has pointed out that it is even possible to determine the H_0 of a mixed perchloric acid-salt solution from the water activity of the solution and a plot such as Figure 2.

One note of caution must be stated here. Those acids which are commonly referred to as weak acids may not fit the H_0 -water activity relationship. It has been pointed out that phosphoric^{4,12} acid and hydrofluoric⁴ acid solutions do not fit on the curve shown in Figure 2.

Acknowledgment. We wish to thank the National Science Foundation for financial support of this work.

Structural Properties of Tetramethylammonium Tribromonickelate $(II)^{i}$

G. Stucky, S. D'Agostino, and G. McPherson

Contribution from the Department of Chemistry and Chemical Engineering, University of Illinois, Urbana, Illinois 61801. Received June 24, 1966

Abstract: The crystal structure of $(CH_{a})_{a}NNiBr_{a}$ has been determined by three-dimensional, single-crystal, X-ray diffraction techniques. The structure consists of linear one-dimensional chains of nickel atoms bridged by three bromine atoms. The bromine atoms are not midway between the nickel atoms due to packing requirements of the $(CH_3)_4N^+$ ion, but are 2.45 and 2.67 A from the nickel atoms so that the site symmetry of the nickel atoms is C_{3v} . Lattice parameters and preliminary structural results are given for CsNiBr₃, CsNiCl₃, and (CH₃)₄NNiCl₃. The electronic absorption spectrum for (CH₃)₄NNiBr₃ is described and compared with that of (CH₃)₄NNiCl₃.

The different types of structures possible for octa-hedral complex halides of the type $R^{T}M^{TT}X_{3}$, where R is an univalent cation, M a divalent metal, and X a halogen, have been discussed in detail by Wells.² The perovskite structure, in which octahedral edges are shared, is in general stable only for the more electronegative fluorides or oxides. The sharing of octahedral faces is rare, presumably because of the close approach of the metal atoms, and has been found almost always in complexes in which the metal atom has a formal oxidation number of three, e.g., Cr₂Cl₉³⁻, V₂Cl₉³⁻, $Ti_2Cl_9^{3-}$, $^{3}Tl_2Cl_9^{3-}$, 4 and $ZrCl_3^{5,6}$ The disputed BaNi^{IV}-O₃ structure⁷ is presumably also of this type. If an increase in the atomic radius of the metal atom is not a determining factor, a linear chain of M^{II}X₃⁻ groups with three bridging halogen atoms might be expected since the anion to cation formal charge ratio of 1.5 is the same as in $M^{III}_{2}X_{9}^{3-}$ anions. Since Wells' review,²

(5) L. F. Dani, T. T. Chiang, F. W. Seabaugh, and E. M. Larsen, *Inorg. Chem.*, 3, 1236 (1964).
(6) J. A. Watts, *ibid.*, 5, 281 (1966).
(7) R. W. G. Wyckoff, "Crystal Structures," Vol. II, 2nd ed, Interscience Publishers, Inc., New York, N. Y., 1964, pp 416–425.

when no structures with M^{II} were known, the only three-dimensional structural work has been with $CsCuCl_3^{8a,b}$ in which the Cu atoms form a nonlinear chain about a 61 axis with three copper-chlorine distances, 2.281, 2.355, and 2.776 A. This structure can be described as copper atoms sharing faces of their chlorine octahedra,^{sa} or alternatively in view of the 0.5 A difference in copper-chlorine bond lengths as octahedra sharing edges.^{8b} We wish to report here an X-ray study of a linear trihalogen bridged structure in which the metal atom has a formal oxidation number of two.

Experimental Section

(CH₃)₄NNiBr₃ was prepared by evaporating a 48.5% HBr solution containing 0.1 mole of (CH₃)₄NBr and 0.1 mole of NiBr₂·6H₂O. All compounds were reagent grade. The red-brown needle crystals had hexagonal cross sections and were assumed to be cylindrical for the absorption corrections described below. The crystals were somewhat hygroscopic and were sealed in thin-walled (0.01 mm) glass capillaries.

Anal. Calcd for $(CH_3)_4NNiBr_3$: Br, 64.3; Ni, 15.8; N, 3.8; C, 12.9; H, 3.2. Found: Br, 63.7; Ni, 15.1; N, 4.1; C, 14.3; H, 4.1.

⁽¹⁾ This work supported in the initial stages by Petroleum Research Fund Starter Grant No. 232 and in part by the Advanced Research Projects Agency under Contract SD-131.

 ⁽²⁾ A. F. Wells, J. Chem. Soc., 1662 (1947).
 (3) G. J. Wessel and D. J. W. Ijdo, Acta Cryst., 10, 466 (1957)

⁽⁴⁾ J. L. Hoard and L. Goldstein, J. Chem. Phys., 3, 199 (1935).
(5) L. F. Dahl, T. I. Chiang, P. W. Seabaugh, and E. M. Larsen,

A crystal with a diameter of approximately 0.10 mm and a length of 0.57 mm was used for collecting intensity data. Multiplefilm equiinclination Weissenberg techniques were used to obtain

^{(8) (}a) A. W. Schlueter, R. A. Jacobson, and R. E. Rundle, Inorg. Chem., 5, 277 (1966); (b) A. F. Wells, J. Chem. Soc., 1662 (1962).

Table I.	Observed	and	Calculated	Structure	Factors	(unobserved	data	are	indicated	b	y an	asterisl	C)
----------	----------	-----	------------	-----------	---------	-------------	------	-----	-----------	---	------	----------	----

н	1	(085	S CAL	н	ĸ	085	CAL	H	ĸ	085	CAL	н	ĸ	085	CAL	H	ĸ	085	ÇAL	н	ĸ	08 S	CAL
				2	5	3.7	3.6*	1	6	13.4	15.6	•	1	11 6	10 /	· 7	7	10.0	10.4	6	1	18.4	21.2
				3	5	11.1	8.1	ī	7	1.5	.2.	•	•	11+3-	10.4	1	i	16.8	18.1	ž	i	13.3	12.9
				4	5	3.8	•8•	ī	8	2.3	1.2+					2	2	22.2	23.8	8	i	3.2	5.4
				5	5	21.1	17.7	ī	9	3.7	6.1					2	à	16.3	13.0	õ	2	65.8	68.7
				6	5	19.6	19.0	2	i	24.2	23.9					2	4	27.3	27.3	ĭ	2	62.7	60.3
••	***	*L= 0*	*****	0	6	7.0	6.8	2	2	14.3	13.0					7	5	20.1	18.9	2	2	14.2	12.5
				1	6	15.9	12.9	2	3	6.1	6.1			L= 2++	* * * * *	ż	6	11.7	14.6	ĩ	2	3.7	3.9
-				2	6	24.9	22.0	2	4	18.0	21.3					4	7	8.9	10.6	4	2	5.8	6.5
4			4.8*	3	6	9.5	7.7	2	5	2.5	• 7 •					Ś	i	23.5	22.1	5	2	18.1	19.3
2	1	28.2	53.9	0	7	20.1	18.3	2	6	7.9	5.8	0	1	25.7	29.2	ŝ	ž	20.1	18.4	6	2	19.1	20.6
2	1	15 3	/8.6	r	7	43.6	45.4	2	7	2.5	1.3*	0	2	81.3	74.5	5	3	23.3	25.8	7	2	7.5	7.7
1	1	12.3	13.0	2	7	28.6	25.3	2	8	2.0	1.3*	Ó	3	84.6	77.5	5	4	12.0	11.5	8	2	7.6	7.4
2	1	, ,	7.3	3	7	3.3	4.4*	3	1	30.4	29.2	0	4	54.9	47.0	5	5	2.2	2.4.	0	3	65.1	64.1
6	1	10.1	10.6	0	8	29.8	26.6	3	2	5.0	6.4	0	5	50.5	43.0	5	6	6.2	6.7	1	3	35.4	35.4
1	-	3.5	3.0*	1	8	29.2	28.4	3	3	2.2	•6*	0	6	33.1	30.2	6	1	32.3	32.3	2	3	7.7	5.4
2		50.0	39.5	2	8	13.3	13.5	3	4	19.8	21.7	0	7	8.5	8.9	6	2	30.4	29.8	3	3	5.6	1.4
ĩ	5	102 4	122 2	0	9	14.2	13.6	3	5	35.6	30.6	0	8	9.0	6.6	6	3	10.1	8.5	4	3	6.4	7.5
ú	5	64 0	122+2	T	9	10.7	7.9	.3	6	9.6	10.6	0	9	2.0	3.3*	6	4	9.4	7.5	5	3	9.8	9.8
Ś	5	17.9	19 9					3	7	9.6	11.0	1	1	62.0	46.1	6	5	7.4	6.0	6	3	8.7	8.4
6	5	11.1	10.0					3	8	3.6	5.0	1	2	91.6	84.4	7	1	14.9	14.4	0	4	2.0	3.2*
7	2	3.7						4	1	12.9	10.3	1	3	53.0	45.0	7	2	15.2	17.3	1	4	28.8	31.8
8	2	3.1	3.3.					4	2	7.4	9.4	1	4	44.7	45.5	7	3	2.0	3.6*	2	4	14.5	14.1
õ	3	10.7	14.5					4	و ا	8.6	10.2	1	5	52.3	46.5	7	4	6.0	5.9	3	4	13.0	14.9
ī	3	16.6	10.5					4	4	29.8	30.8	1	6	18.3	15.8	8	1	11.1	12.8	4	4	19.1	21.7
2	3	58.8	60.2					4	2	19.4	17.5	1	7	18.4	16.6	8	2	9.9	11.0	5	4	8.4	7.2
3	3	76.7	81.9	0	1	12 0	4 0	4	<u>•</u>	5.4	5.0	1	8	12.6	10.0	9	1	9.8	11.7	0	5	33.0	31.7
4	3	22.8	20.8	ň	ŝ	111.3	100 0	÷.	_ !	13.3	11.8	2	1	74.1	61.7					1	5	38.6	40.8
5	3	8.1	2.6	ň	3	88.9	94 2	2	1	12+2	11.8	2	2	10.0	8.7					2	5	2.3	1.3*
6	3	15.0	14.4	ň	ž	6 9	, , , ,	2	4	24+1	20.9	2	٤	/ • 4	11.5					3	5	22.5	23.1
7	3	18.1	15.5	ŏ	Ś	45.6	45 2	2	2	13+2	13.0	4	4	25.2	22.3					4	5	13.3	12.5
8	3	2.4	5.3+	ň	6	25.7	27 1		7	2 2 2	7.3	4	2	30.2	29.5					0	6	17.8	19.4
0	4	3.5	2.2+	ŏ	7	4.0	1.9	2	1	23	2.0*	2	6	5.7	7.1	••		L= 3++	*****	1	6	10.3	10.8
1	4	7.6	3.9	ŏ	8	2.5	2.7	4	1	20.4	30.1	2		8.8	6.2					2	6	5.7	3.8
2	4	18.5	18.2	ō	9	5.3	5.4	6	â	11 5	20.1	4	8	1.9	2.84		,			3	6	8.2	7.4
3	4	10.4	8.8	ī	i	19.7	21.8	7	1	10.2	17.7	-	1	11.3	11.7	0	1	, 1.2	1.0	4	6	3.7	3.3
4	4	3.9	.7.	ī	2	105.0	97.8	;	2	11 4	10.3	2	4	7	20.9	1	1	1/+0	12.3	0	- 1	2.4	1.2*
5	4	10.4	9.0	ī	3	56.9	51.9	,	ć	2 6	2 7-	2	,	30+7	27+0	4	1	12.2	14.0	1		2.2	• 4 •
6	4	27.5	24.5	1	4	50.5	47.9	0	1	4.9	3./*	2	-	22+0	23.3	د ر	1	41+1	21+4	2		2.0	1.1*
1	5	17.2	15.7	1	5	66.5	56.9	å	0	2.5	6.4	2	2	29.0	130.1	4	1	0.7	1.3	0	8	2.1	2. (*
				-	-		,	9	U	0.2	5.4	د	6	12.0	13.5	2	1	9.1	8.0	0	9	3,9	3.8

411 hkl observed intensities of which 181 were independent with Ni-filtered Cu K α radiation from hk0, hk1, hk2, and hk3 levels. In addition, hol and hhl precession-timed exposure intensity data were collected with Zr-filtered Mo K α radiation and used for preliminary scaling purposes. All intensities were visually estimated with a calibrated strip by two independent judgers and the set of judged intensities with the best internal consistency was used for the determination of the structure.

Calculations were made with an IBM 7094 computer. Lorentz, polarization, and cylindrical absorption corrections⁹ reduced the observed intensities to squared structure factors. The linear absorption coefficient (μ) for this compound is 185.5 cm⁻¹ with Cu K α radiation. This gives a calculated value of 0.87 for μR for the crystal used. Fourier calculations were made with the Sly-Shoemaker-Van den Hende program. The full matrix, least-squares refinement was carried out using the Busing and Levy ORFLS program modified to make real and imaginary anomalous dispersion corrections. The necessary parameters used for the latter were those of Dauben and Templeton.¹⁰ No corrections were made for extinction. The weighting scheme was based on

$$\sigma = 0.05F \left[\sqrt{10} \frac{I_{\min}}{I_{obsd}} \right]^2 \qquad I_{obsd} < \sqrt{10}I_{\min}$$
$$\sigma = 0.05F \qquad \qquad I_{obsd} \ge \sqrt{10}I_{\min}$$

with $\omega = 1/\sigma^2$. Unobserved reflections were assigned an intensity and weight according to Hamilton.¹¹ The function $\Sigma \omega(|F_{\circ}| |F_{\rm c}|^2$ was minimized. Atomic scattering factors were taken from the compilation of Ibers for C, N, Ni, and Br.12 The variables were scale factors, atomic coordinates, and individual atom temperature factors for isotropic refinement. One cycle of anisotropic refinement was carried out after the isotropic refinement was complete with scale factors fixed.

Transmission absorption spectra were measured with a Cary Model 14M recording spectrophotometer using a Nujol mull on filter paper.

Results

Unit Cell and Space Group. (CH₃)₄NNiBr₃ crystallizes with two formula units per cell in the hexagonal crystal system. Unit cell constants were found to be $a = b = 9.35 \pm 0.02$ A, $c = 6.35 \pm 0.01$ A. The only systematic extinctions were 00l, l = 2n + 1. With the Laue symmetry 6/m, this implies the space group $P6_{s}$ or $P6_{3}/m$. Two formula units per cell require either $\overline{6}$ or $\overline{3}$ symmetry for the nitrogen atom in P6₃/m but only threefold symmetry in P63, so that the latter space group was initially assumed. The calculated density is 2.57 g cm⁻³ and the observed density was 2.49 g cm^{-3} .

Determination of the Structure. A three-dimensional Patterson map revealed the positions of the nickel and bromine atoms. The nickel atoms were taken at (0, 0, 0) and $(0, 0, \frac{1}{2})$ in P6₃, fixing the origin. The bromines were then found in the general positions $(x, y, \frac{1}{4})$, etc. A three-dimensional electron density calculation with phases based on the Ni and Br positions gave the N and C positions. After seven cycles of isotropic least-squares refinement the disagreement index $R(R = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|)$ was 11.1% observed and unobserved reflections. For observed data only R = 10.3 %. A subsequent anisotropic cycle gave R = 10.4% for observed and unobserved data and 9.6% for observed data only. No significant positional parameters shifts occurred and all results quoted in this paper are based on the isotropic refinement. The maximum shift of positional coordinates for the last cycle was 0.0002 of the cell edges. The final calculated and observed structure factors are listed in Table I. Final atomic parameters and standard deviations are tabulated in Table II. Interatomic distances, angles, and errors are listed in Table III.

Description of the Structure. The structure consists of a linear chain of nickel atoms with site symmetry

⁽⁹⁾ W. L. Bond, "International Tables for X-Ray Crystallography,"

 ⁽¹⁾ V. Z. Bold, International Tables for J. 1962, pp 291–298.
 (10) C. H. Dauben and D. H. Templeton, "International Tables for X-Ray Crystallography," Vol. III, Kynoch Press, Birmingham, England, 1962, p 214.

⁽¹¹⁾ W. C. Hamilton, Acta Cryst., 15, 185 (1962).

⁽¹²⁾ J. A. Ibers, ref 10, pp 202, 204, 211.

Figure 1. Nickel and bromine atoms in tetramethylammonium tribromonickelate(II).

 C_{3v} and Ni–Ni distance of 3.17 A. The $(CH_3)_4N^+$ groups are on threefold axes at 1/3, 2/3, 0.256 and impart a directional sense to the structure in that the inverted umbrellas formed by three carbon atoms of $(CH_3)_4N^+$ point in the same direction for all tetramethylammonium molecules. The observed displacements of the

Table II. Positional, Temperature, and Scale Parameters andErrors (numbers in parentheses are the estimated standarddeviations in the least significant place)

Atom	x	у	z	В
Br Ni C_1 C_4 N	0.1466(3) 0.0000 0.1684(40) 0.3333 0.3333	0.2461 (4) 0.0000 0.6383 (41) 0.6667 0.6667	0.7794 (29) 0.0000 0.3277 (67) 0.0153 (84) 0.2556 (90)	4.97 (11) 2.49 (14) 5.36 (75) 5.84 (95) 2.31 (46)
Layer	Scale factor			
hk0 hk1 hk2 hk3	0.9095(27) 1.517(44) 1.477(46) 1.544(49)			

Table III. Distances and Angles for (CH₃)₄NNiBr₃^a

	Bonded distances, A, and angles, deg									
$Ni-Br_1$ $Ni-Br_6$ $N-C_1$ $N-C_4$	2.67 (1) 2.45 (1) 1.50 (5) 1.53 (7)	$\begin{array}{c} Br_1 - Ni - Br_4 \\ Br_1 - Ni - Br_2 \\ Br_1 - Ni - Br_5 \\ Br_4 - Ni - Br_5 \\ Ni - Br_4 Ni_1 \\ C_1 - N - C_2 \\ C_1 - N - C_4 \end{array}$	173.43 (26) 80.86 (26) 94.17 (27) 90.45 (28) 76.45 (19) 111.1 (2.60) 107.7 (2.09)							
1	Nonbonded intermolecular distances, A									
$\begin{array}{c} Ni - Ni \\ Br_1 - Br_2 \\ Br_3 - C_1 \\ Br_4 - C_1 \\ Br_5 - C_1 \\ Br_5 - C_1 \\ Br_5 - C_3 \\ Br_5 - C_3 \\ Br_5 - C_4 \end{array}$	3.17 (1) 3.47 (1) 3.75 (2) 3.74 (3) 3.62 (3) 4.01 (4) 4.58 (5) 4.00 (4) 4.81 (3)	$\begin{array}{c} {\rm Br_1-C_2} \\ {\rm C_1-C_2} \\ {\rm C_1-C_4} \end{array}$	3.73(3) 2.47(6) 2.44(7)							

^a Refer to Figure 2. Br₁ is the Br position in Table II. Ni refers to the position $(0, 0, \frac{1}{2} \text{ and } N \text{ to } \frac{1}{3}, \frac{1}{3}, 0.2557)$.

Figure 2. Unit cell of tetramethylammonium tribromonickelate-(II). The *c* axis is normal to the plane of the paper. The nitrogen atoms $(\frac{1}{3}, \frac{1}{3}, 0.2556)$ have been omitted for clarity. In this projection C₄ and its symmetry equivalent (dashed atoms) are, respectively, beneath C₁, C₂, C₃, and their symmetry equivalents.

bromine positions (0.1466, 0.2461, 0.7794) from the octahedral sites about the nickel atom (Figure 1) are consistent with optimizing the packing of the bromine atoms with the tetramethylammonium cation. Thus, the elongation of the Ni-Br₁ distance to 2.67 A places Br_1 3.73 A from C_4 of the cation one unit cell in the [001] direction away from the labeled cation in Figure 2. This value (3.73 A) is representative of the other CH₃-Br distances in this structure. It should follow that monatomic cations such as Cs⁺ and Rb⁺ will give structures with NiX₃⁻ anions in which the bridging halogens are exactly halfway between metal atoms. Unfortunately, there is considerable discrepancy in the literature concerning the only structure which has been examined, CsNiCl₃. Wyckoff⁷ reports a = 7.18, c =17.79 A. Tischenko,¹³ on the basis of electron diffraction studies, gives the space group $P6_{3/m}$ mc (not isomorphous with CsCuCl₃ as reported by Schlueter, et al.⁸) with a = 7.18 and c = 5.93 A. Finally, Asmussen and Soling¹⁴ report a = 7.17 and c = 11.87 A. From our X-ray data for C_sNiCl_3 we find a = 7.18, c = 5.93 A, space group P6_{3/m} mc in agreement with the parameters of Tischenko. This implies that the chlorines are indeed midway between the nickel atoms. CsNiBr₃ is isomorphous with CsNiCl₃, $a = 7.50 \pm$ 0.02, $c = 6.24 \pm 0.01$ A, mol wt 431.34. The nickelnickel distances are accordingly 2.97 and 3.12 A in the two compounds. Our preliminary structural data for CsNiBr₃ indicate a relatively short Br-Br distance of 3.50 A and a Ni-Br distance of 2.56 A. It is interesting to note that the latter value is almost exactly the average value of the two nickel-bromine distances in $(CH_3)_4NNiBr_3$.

Discussion

The RMX₃ compounds and the fact that single crystals can be obtained from these compounds offer the possibility of experimentally studying the relation of magnetic to structural properties in one of the simplest systems possible in which collective magnetic phenomena are found, namely the periodic infinite linear chain. Single crystals have not been previously grown of compounds such as ZrCl₃, and in addition in ZrCl₃,

⁽¹³⁾ G. N. Tischenko, *Tr. Inst. Kristallogr., Akad. Nauk SSSR*, 11, 93 (1955).

⁽¹⁴⁾ R. W. Asmussen and H. Soling, Z. Anorg. Allgem. Chem., 283, 3 (1956).

CuCl₂, and CrCl₂ it is to be expected that interactions between chains are more likely to be a factor, thus adding another dimension to the problem.

The magnetic susceptibilities of several of the RMX₃ complexes have been measured to liquid nitrogen temperatures by Asmussen and Soling¹⁴ and some of their data are reproduced in Table IV. Inasmuch as the Curie-Weiss constant increases¹⁴ with the metal-metal distance as one goes from $CsNiCl_3$ to CsNiBr₃, indicating larger antiferromagnetic interactions, it would appear that in agreement with the discussion of Schlueter, et al.,8 the important factor is not the metal-metal overlap. Stout and Chisholm¹⁵ have pointed out that in the interlinked chain structures of CuCl₂ and CrCl₂ one would expect Kramers¹⁶ superexchange to be much greater within the chain than between chains and were able to explain the heat capacity maximum (23.91 °K for CuCl₂) and magnetic susceptibility maximum (70°K for CuCl₂) on this basis using an Ising model. The antiferromagnetic ordering in CrCl₂ within a chain has been verified by neutron diffraction studies.¹⁷ Since exchange via the bridging halogens depends rather critically on the metal-halogen distance, the differences in the magnetic properties of tetramethylammonium¹⁸ ($\theta = 0^{\circ}$ K) and cesium¹⁴ ($\theta = -75^{\circ}$ K) salts of NiCl₃⁻ might be explained to a large extent by distortions of the type found in tetramethylammonium tribromonickelate. We are currently examining the crystal structures and magnetic properties of several MX₃⁻ salts with different cations and transition metals to further correlate the magnetic and structural properties of these compounds. Neutron diffraction studies are being carried out at Argonne National Laboratories.

(15) J. W. Stout and R. C. Chisholm, J. Phys. Soc. Japan, Suppl., **B-1**, 522 (1962).

(16) H. A. Kramers, *Physica*, 1, 182 (1934).
 (17) J. W. Cable, M. K. Wilkinson, and E. O. Wollon, *Phys. Rev.*,

118, 950 (1960).

(18) See footnote a, Table IV.

Table IV. Magnetic and Structural Data for RNiX₃ Compounds

-				•
Compound	Curie–Weiss $-\theta$, °K	constant Ref	μ_{eff}	Ni-Ni distance, A
RbNiCl ₃ CsNiCl ₃ RbNiBr ₃ CsNiBr ₃ (CH ₂)/NNiCl ₂	112 76 156 101	14 14 14 14	2.95; 20° 3.01; 21° 2.84; 21° 2.94; 22° 3.20; 20°	2.97 3.09 3.12 3.08

^a D. M. L. Goodgame, M. Goodgame, and M. J. Weeks, J. Chem. Soc., 5194 (1964).

The absorption spectra of some of the compounds MNiX₃ have been reported by Asmussen,¹⁹ Cotton,²⁰ and Goodgame.¹⁸ The absorption spectrum of $(CH_3)_4$ -NNiBr₃ shows the following spin-allowed bands: ${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$ at 6300 cm^{-1,3} $A_{2g} \rightarrow {}^{3}T_{1g}(F)$ at 10,400 cm⁻¹, and ${}^{3}A_{2g} \rightarrow {}^{3}T_{1g}(P)$ at 19,700 cm⁻¹. In addition the following spin-forbidden bands are observed: ${}^{3}A_{2g} \rightarrow {}^{1}E_{g}({}^{1}D)$ at ~11,400 cm⁻¹ and ${}^{3}A_{2g} \rightarrow {}^{1}T_{2g}({}^{1}D)$ at 17,500 cm⁻¹ (s). There is no evidence of the trigonal distortion in the absorption spectra. Using the same method as Goodgame,¹⁸ the value of Δ is 6300 cm⁻¹ and B' is approximately 750 cm⁻¹. Goodgame reports values of Δ and B' as 6600 and 840 cm⁻¹. respectively, for (CH₃)₄NNiCl₃. Preliminary X-ray data show that $(CH_3)_4NNiCl_3$, a = 7.85, c = 6.16 A, has a similar structure to that of (CH₃)₄NNiBr₃, but is not isomorphous; for example, using the same fractional position coordinates found in (CH₃)₄NNiBr₃ with the above experimental lattice parameters for (CH₃)₄NNiCl₃ results in a N-C distance of 1.22 A. The complete three-dimensional structure of this compound will be reported in a subsequent paper.

(19) R. W. Asmussen and O. Bootrup, Acta Chem. Scand., 11, 745 (1957). (20) F. A. Cotton, O. D. Faut, and D. M. L. Goodgame, J. Am. Chem.

Amination and Transamination as Routes to Fourth Group Diamines¹

C. H. Yoder and J. J. Zuckerman

Contribution from the Department of Chemistry, Cornell University, Ithaca, New York. Received March 30, 1966

Abstract: Preparation and properties of some examples of gem-diamines of carbon, silicon, germanium, and tin are presented. These bis(dialkylamino) compounds were used in transamination reactions with N,N'-disubstituted ethylenediamines to yield monomeric imidazolidine derivatives, with piperazine to yield analogs of 1,4-diazabicyclo-[2.2.1]heptane (germanium) or its dimer (silicon) and polymers, and with ethylenediamine to yield polymers. Backbone structures for the polymers are assigned on the basis of nmr and infrared spectra and analytical data. Mechanistic implications of the observed group IV reactivities toward amination (Si > Ge > Sn) and transamination (Sn > Ge > Si) are discussed.

This publication reports the results of our investigations on the synthesis and relative reactivities of organometallic diamines of carbon, silicon, germanium,

and tin. We were interested in the comparative aspects of the chemistry of the gem-diamines of these elements, especially the dialkyldiamines of the type

(1) Portions of this investigation were presented at the 148th National Meeting of the American Chemical Society, Chicago, Ill., Aug 1964, and at the Second International Symposium on Organometallic Compounds, Madison, Wis., Sept 1965.